ing.grid

Date Submitted:
2025-03-31

Date Received:
2025-04-14

Date Accepted:
2025-11-11

Date Published:
2025-12-01

DOI:
doi.org/10.48694/inggrid.4656

Reviewers:
René Caspart
Dorothea Iglezakis

License:
This work is licensed under CC BY

40@®

Keywords:
research data management, figure,
plot, FAIR data, metadata

Data availability:
This article does not use data.

Software availability:

Plot Serializer GitLab Repository
Plot Serializer DOI

Plot Serializer Docs

Corresponding Author:
Michaela LeStakova

michaela.lestakova@tu-darmstadt.de

SOFTWARE DESCRIPTOR
Plot Serializer — A Tool for Creating FAIR Data for

Scientific Figures

Michaela Lestakova 1, Ning Xia 1, Julius Florstedt !

1. Chair of Fluid Systems, Technische Universitdt Darmstadt, Darmstadt, Germany.

Abstract. This software descriptor introduces Plot Serializer, a Python package for supporting
researchers in creating FAIR datasets corresponding to the figures of their manuscript. Fitting
into existing workflows, Plot Serializer enables effortless export of data plotted in scientific
figures into interoperable datasets with customizable metadata for improved reusability and
thus facilitates research data management practices. Besides a clear description of Plot
Serializer’s scope and functionality, a minimal example of its usage and output is given.

Finally, its limitations and future plans are outlined.

1 Introduction

Research data and research software are ubiquitous in scientific work. To fight the reproducibility
crisis in science, more and more researchers are adopting the practice of sharing research data and
software associated with their publications or even as standalone research output. This practice
is sometimes even required by journals, conferences and funding bodies. Research data and
software are of best use for the scientific community if they are findable, accessible, interoperable
and reusable, i.e. FAIR [1], [2]. However, making them FAIR is not only challenging but often
also time-consuming. Plot Serializer has been developed as a Python package that assists
researchers to create datasets corresponding to the figures of their manuscript with little effort,
thus supporting them in FAIRifying their data. This leads to enabling the reader to understand the
interconnections between different research objects, such as which data is depicted in a certain
figure in the manuscript and with which code it was created, which is an important part of the
“R” in FAIR: reusability.

In scientific articles, data visualizations or figures can be seen as “windows” to the data space
behind the article: they are an essential result of scientific work and serve as a link between the
text and the data that it is based on. However, probably every researcher knows the struggle
of getting their hands on the data depicted in a figure. In most cases, it is still necessary to
contact the authors of the paper to obtain the data. Fortunately, it is becoming more common that
scientific articles contain a data availability statement with a reference to an openly available
dataset [3]. However, even then the data may be poorly documented or not follow the FAIR
principles: despite being findable and accessible, they may lack interoperability and reusability.
Plot Serializer has been developed as a tool to address these issues, aiming to lower the threshold

for creating comprehensible, datasets corresponding to the figures in a scientific publication.

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 1

https://doi.org/10.48694/inggrid.4656
https://orcid.org/0000-0002-5502-9412
https://orcid.org/0000-0002-8524-0569
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://git.rwth-aachen.de/rdm-tools/plot-serializer
https://doi.org/10.5281/zenodo.15082363
https://plot-serializer.readthedocs.io/en/latest/
mailto:michaela.lestakova@tu-darmstadt.de
https://orcid.org/0000-0002-5998-6754
https://orcid.org/0009-0006-8245-5958

SOFTWARE DESCRIPTOR Plot Serializer

2 Scope

Plot Serializer is a Python package that enables effortless export of data plotted in scientific
figures into interoperable datasets with customizable metadata for improved reusability. As the
name indicates, Plot Serializer utilizes serialization: the process of converting a Python object or
data structure into a format that can be easily stored or transmitted [4]. The current version of
Plot Serializer provides APIs for figure creation using matplot lib, the most popular plotting
package among Python users. Other plotting packages such as plotly are currently not supported
but the modular architecture of Plot Serializer allows to include them in the future.

Using a Proxy class, Plot Serializer wraps the plotting functions of matplotlib and captures
the data immediately after being passed to the plotting function, hence ensuring consistency
between the plotted data and exported data. Important metadata are gathered in the process of
plotting. It is possible to differentiate between two kinds of metadata in the context of figures:
semantic metadata that carry information about the content and meaning of the data (for example
axis labels or plot title) and formatting metadata that describe the plot style (for example axis
scaling, line thickness or colors). Plot Serializer prioritizes semantic information to formatting
information, as its focus lies on supporting research data management (RDM). Plot Serializer
uses its own metadata model that loosely follows the conventions of matplotlib. The data

models have been implemented using Pydantic [5].
Currently, Plot Serializer covers the most widely used types of 2D and 3D figures, namely:

* line plot 2D

* line plot 3D

* scatter 2D

* scatter 3D

« surface 3D

* bar plot

* error bar

* box plot

* pie

* histogram

Each of these figure types has slightly different requirements regarding data formatting and
metadata modelling. We are continuously working on expanding the list.

As not all semantic metadata are by default provided through the figure (for example certain
parameter values may instead be provided via the figure caption or through a text box), Plot
Serializer offers the possibility to add custom metadata in the form of key-value pairs to each
element of the plot, as will be shown in Section 6. This enables customizability to a broad range

of use-cases across disciplines.

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 2

SOFTWARE DESCRIPTOR Plot Serializer

Once the figure has been finalized, Plot Serializer allows the export to a JSON file which is
easily human and machine readable.JSON stands for JavaScript Object Notation, is a widely used
format for information exchange in programs or on the web. JSON stores data in a structured
way using key-value pairs, making it easy to map the structure to data structure in programming
languages, which makes it machine readable. Since JSON is a serialization format, all data
is saved as strings, which also makes it human readable. We reuse the terminology of the

matplotlib library in our specification where possible.

Plot Serializer can include exported figures as a file object in Research Object Crate (RO-crate), a
newly established format for storing research objects based on JSON-LD [6]. The idea behind it
is to improve reusability of research objects by packaging them along with their metadata, which

can capture identifiers, provenance, relations and annotations, in a machine readable manner [6].

Plot Serializer also includes tools for deserializing its output, i.e. the JSON files, to recreate
the figures. This is where the the formatting metadata play an important role. As the format-
ting metadata in Plot Serializer contain only a limited selection of all formatting information
that a matplotlib figure would provide, the focus lies on comprehensible rather than identical

representation of the original figure.

Plot Serializer is currently limited to the plot types stated above. Further limitations include the
inability to automatically capture text from text fields as metadata, which may be important in
plots where such text annotations carry a lot of meaning. Moreover, Plot Serializer currently
cannot do any language processing, such as extracting quantity and units from the axis descriptions
and automatically storing them in the corresponding metadata fields. These features may be
added in the future.

To summarize, serializing figures with Plot Serializer offers researchers a simple but efficient
tool for creating FAIR datasets that correspond to the figures in their scientific articles. This may
ultimately help readers find the dataset corresponding to a certain figure and vice versa while

guaranteeing to include essential semantic and formatting metadata.

3 Related Work

Because of the important role data visualization plays in scientific articles, several tools exist
for creating figures in most programming languages. In Python, the most well-known and most
widely used one is matplot 1ib [7]. Using the pyplot module in this package, users can create
a broad spectrum of figure types and perform advanced formatting. The Python APIs provided
by matplotlib are well documented and easy to use, making them easy to integrate into any
workflow. As the name suggests, matplotlib’s main focus lies on the visualization of the data,
with the final product being the figure. The data depicted in the figure is not comprehensively
stored in the corresponding Python object, and matplotlib does not contain any function for

serializing the figure objects it creates.

plotly [8] is another popular plotting package that provides Python APIs. plotly is originally
a JavaScript library plotly. js with the main purpose of creating interactive plots for websites.
plotly by default enables to serialize the figure objects into JSON files, similarly to Plot

Serializer. However, focusing on visualization rather than RDM, plot ly prioritizes formatting

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 3

SOFTWARE DESCRIPTOR Plot Serializer

metadata to semantic metadata.

Linking plots, publications, code and data is the core idea behind the Python and Matlab library
PlotID, which was developed within the same project as Plot Serializer and can be considered
its precursor [9]. PlotID generates a unique ID for items that belong together, prints it on the
plot and packages the items together in a folder or a ZIP file. PlotID publishes the primary
dataset along with the script used to create the plot, as opposed to just the plotted data as is the
case with Plot Serializer, which may be a problem for reproducibility if the execution of the
script is computationally expensive. However, we encourage using PlotID together with Plot
Serializer as the former can be used for generating the identifiers for easier linking of data and

plots via the latter, see documentation for details.

The most widely used package for serialization of objects in Python is pickle [10]. Using
pickle, however, the object hierarchy is kept upon serialization, which ultimately means its
main focus lies on formatting requirements of matplotlib. To find data and add relevant semantic
metadata to it would be very challenging for the user. Moreover, the data format pickle uses is
Python-specific. While this brings advantages regarding the serialization, it also means reduced

interoperability from the perspective of the FAIR criteria.

Recently, some authors have demonstrated RDM workflows that include creating and publishing
data for each figure with the aim of improving reusability of their data [11], [12]. In their
workflows, a JSON file is created for each figure in the article which contains the data as well as

semantic metadata. These files are published in a data repository and linked in the article.

4 Embedding Plot Serializer in Research Workflows

Plot Serializer was developed with the aim of lowering the threshold for RDM to a minimum,
without the necessity to change the research workflow other than using Plot Serializer in the
data visualization step. Figure 1 illustrates how Plot Serializer can be embedded in the research
data management workflow. The researcher usually performs their study in a private, local file
system. They may use primary data or generate them within their own research. Plot Serializer
is then embedded in the research code, which may consist of complicated code pipelines of
simulations, parameter studies, analysis procedures and visualization, potentially resulting in
secondary data as output. The visualization step using Plot Serializer will result in plots and

corresponding plot data as output.

For findability and accessibility reasons, relevant data can be stored in a data repository that
allows the assignment of persistent identifiers (PIDs), such as DOI. Primary data and secondary
data may underlie privacy restrictions and cannot always be published. This is especially common
in projects with industry partners in engineering sciences. However, data that will be displayed
in the plots in the publication is in most cases not critical and can be made publicly available in
a data repository. The plotted data, delivered by Plot Serializer, can link the data to the figure
via metadata provided by the user manually — for example stating the link to the publication,
the figure number, plot ID [9] or even caption. Plot Serializer currently supports exporting the
data as JSON and optionally packing the JSON file into an existing or a new RO-Crate [6].
RO-Crates enable the sharing of research outputs (code, data, methods, etc.) with their context,

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 4

https://plot-serializer.readthedocs.io/en/latest/plotID.html

SOFTWARE DESCRIPTOR Plot Serializer

local file system data repository

plot data

P ;
o 1
o 1
i 1
i 1
o |
o i
i i
o i
o i
i :
o :
o :
o 1
o :
[1
i 1

research code o i
[i
i i
o i
o i
o 1
o :
o :
o 1
o 1
i 1
i 1
i]

publication repository code repository

i code repository |
i (archiving)

1
i

| (development,
| maintenance)
I

i
i
i

! i

' |

i research !

| code !

H '

H '

i

i

i

i

< :

(journal, preprint server, ...)

research

code

Figure 1: Embedding Plot Serializer in the research process

as a coherent whole. In an RO (“research object™), the plotted data exported by Plot Serializer
can be an integral part More details on the implementation are provided in Section 5.

It is good practice to store the research code in a repository that allows version control, such as on
GitLab or GitHub. These repositories offer functionalities to assist with continuous development,
project management, as well as code maintenance. For archiving purposes and for adherence
to FAIR principles for research software, however, storing code in a repository that allows the
assignment of PIDs such as DOI and accessibility is important (e.g. Zenodo or an institutional
repository) [1].

5 Implementation

Plot Serializer is implemented as a library, mirroring the most common API calls of matplotlib
while supplementing its functionality with generating the JSON format out of the plotting data.
Instead of starting the plotting process via the matplotlib.pyplot [7] object, the user instead
creates an instance of Plot Serializer’s MatplotlibSerializer class which acts as the main
API for Plot Serializer.

The API of MatplotlibSerializer follows the one of matplotlib.pyplot.subplots(). Upon
execution, MatplotlibSerializer.subplots() creates a Figure object like its matplotlib
counterpart but, crucially, its own AxesProxy object rather than matplotlib’s Axes object.
The AxesProxy class contains functions that enable serialization and can thus be seen as the
core of the Plot Serializer architecture.

The aim of AxesProxy is to mimic the functionality of matplotlib’s Axis class but to enable
gathering data along with all necessary metadata handed over by the user during the plotting
process. The data is captured in the initial step of the execution of the plotting functions such as
plot() or scatter (). Metadata is gathered all throughout the plotting process: a part of it may
come from arguments passed to the plotting functions, such as marker or label in the minimal

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 5

SOFTWARE DESCRIPTOR Plot Serializer

Serializer MatplotiibSerializer
write_json_file(file- Union[TextlO str]) 1 showi(): None
add_metadata(dict: Mapping[str, Union[int,floatsir]]) subplots(nrows: Literal[1], ncols: Literal[1]) : Tuple{MplFigure, AxesProxy3D

0.7 1
AxesProxy Figure AxesProxy3D
bar(x, height) : BarContainer traces: List{Trace2D] plot(x,y,z): Path3DCollection
plot(x,y): listiLine2D] <>7 axis: Axis[] 4{) plot_surface(x,y,z): Poly3DCollectionh
scatter(x,y) PathCollection title: str scatter(x,y,z): Path3DCollection
Proxy
delegate
0.* 0.*
Flot2D Piot3D
traces List{Trace2D] traces: List{Trace2D]
axis: Axis]] axis: Axis[]
title: str title: str
0.1
0.1
0. 1.2 1.3 0.*
BarTrace2D Axis ScatterTrace3D
traces: List{Trace2D] scale: Scale datapoints: List{Point3D]
axis: Axis[] limit: Tuple[fioat, float] marker. str
title: str lable: str color: Color

Figure 2: Simplified class diagram for two figure types in Plot Serializer: a 2D bar plot and a 3D
scatter plot.

example in Section 6, while others are gathered from other functions executed on the object,
such as xlabel and ylabel ibid. Last but not least, using AxesProxy allows Plot Serializer to

easily differentiate between errors raised in matplotlib from its own.

The class hierarchy of Plot Serializer is strongly tailored to the one of matplot1ib with some
changes for better understandability in the scientific community, see Figure 2. It is modelled using
Pydantic [5], a state-of-the-art Python package for data validation which supports conversion
to JSON. Each scientific figure is thus represented using a Figure class. Each Figure can
contain multiple Plots. Depending on their dimensionality, each Plot can have two or three
Axes, corresponding to the coordinate lines of the figure. The Axes form the coordinate system
of the Plot. The Plot can contain multiple Traces, which are sets of Datapoints related in a
way that separates them from other datapoints. The minimal example in Section 6 contains two
Traces: one for children and one for adults. The terminology of the classes and their properties

has been selected with a focus on good human readability of the resulting JSON.

Besides writing the figure into a JSON file, Plot Serializer supports packing the figure into
an RO-Crate by exporting the JSON file together with the RO-Crate specification metadata
document that includes metadata for each item within the collection [6]. The possibility to add

the JSON file into an existing RO-Crate is also supported. .

To facilitate better usability of data serialized using Plot Serializer, the package contains a so-
called Deserializer which enables to convert a JSON file created by Plot Serializer back into
the corresponding Pydantic class to be ultimately used by matplot1ib to recreate the original

figure. As previously discussed, the focus of Plot Serializer lies on RDM and thus semantic

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 6

SOFTWARE DESCRIPTOR Plot Serializer

rather than formatting metadata, which means that Deserializer will not be able to perfectly
reproduce highly individualized figures. However, it should be able to deliver comprehensible
representations of the underlying data in most cases.

To assure code quality, Plot Serializer uses both static and dynamic code analysis.

For static code analysis, Plot Serializer relies on the linter Ruff which allows it to improve
code-structure, readability and maintainability. Code and functionality independent from the
matplotlib API are typed and type-checked via MyPy.

The dynamic analysis consists primarily of testing. The plotting functions for each of the covered
figure types are first tested manually with multiple input sets to ensure that the output matches the
expectation. If correct, the resulting JSON files are used as a benchmark in subsequent unit tests
and compared after each commit. Additionally, Plot Serializer uses automatic testing (mostly
fuzzing), testing a variety of inputs with hypothesis strategies. The testing is performed with
pytest and achieves a code coverage of 83% , not counting hypothesis testing.

Plot Serializer is well documented. The documentation has been created using Sphinx and
is available under https://plot-serializer.readthedocs.io/en/latest/. Each version comes with a

thorough general and API documentation.

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 7

https://plot-serializer.readthedocs.io/en/latest/

SOFTWARE DESCRIPTOR Plot Serializer

—e— child
0.6 adult

0.5 1

0.4 q

0.3

HAPPINNESS LEVEL

0.2 1

0.114

0.0 1

T T T
0.0 0.5 1.0 15 2.0 25 3.0 35 4.0
NUMBER OF COOKIES EATEN

Figure 3: Example figure

6 Minimal Example

The example figure in Figure 3 was created using the following code:

from plot_serializer.matplotlib.serializer import MatplotlibSerializer

serializer = MatplotlibSerializer()

fig, ax = serializer.subplots()

x = 1[0, 1, 2, 3, 4]
y_child = [0, 0.3, 0.5, 0.6, 0.65]
y_adult = [0, 0.25, 0.4, 0.5, 0.55]

ax.plot(x, y_child, marker="o0", label="child")
ax.plot(x, y_adult, marker="o0", label="adult")

ax.set_xlabel("NUMBER OF COOKIES EATEN")
ax.set_ylabel("HAPPINNESS LEVEL")

ax.legend()

fig.savefig("cookies.png")

serializer.write_json_file("./test_plot.json")

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 8

SOFTWARE DESCRIPTOR

Plot Serializer

The command write_json_file from line 18 of the above code will produce a JSON file

test_plot.json with the following contents:

{
"plots": [
{
lltypell : Il2dll,
lltitlell: llll,

"x_axis": {

"label": "NUMBER OF COOKIES EATEN",

"scale": "linear"

iy

"y_axis": {

"label": "HAPPINNESS LEVEL",

"scale": "linear"

iy

"traces": [

{

"type": u'l_ineu,
"linewidth": 1.5,

"linestyle": "-",
"marker": "o",
"label": "child",
"datapoints": [
{
"x": 0,
"y'": 0.0
+
{
"x'": o1,
"y": 0.3
+
{
"x'": 2,
"y": 0.5
+
{
"x": 3,
"y": 0.6
+
{
"x'": 4,
"y": 0.65
}

ing.grid 1(3 - Fair Data Management in Engineering Sciences),

SOFTWARE DESCRIPTOR Plot Serializer

"type": "line",
"linewidth": 1.5,
"linestyle": "-",
"marker": "o",
"label": "adult",

"datapoints": [

{
"x": 0,
"y": 0.0

3

{
"X,
"y": 0.25

+

{
"x": 2,
"y'": 0.4

+

{
"x": 3,
"y'": 0.5

+

{
"x": 4,
"y": 0.55

}

1
}
]
}

The JSON file provides the essential information about the figure and the data shown in it. The
user does not have to provide any additional information that goes beyond good scientific data
visualization practices, such as providing axis descriptions — all information stems from what
has been passed to the ax object via the corresponding functions.

The figure is the first and only element of the "plots" list. Under the keyword "traces",
the two traces, i.e. sets of data points depicted in the diagram can be found. Hence, there are
two traces, each consisting of 4 data points, which depict the relationship between "NUMBER OF
COOKIES EATEN" and "HAPPINNESS LEVEL" for children and adults.

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 10

SOFTWARE DESCRIPTOR Plot Serializer

Plot Serializer also allows users to add custom metadata to each figure element — the figure itself,
the plot (for figure with multiple plots, referred to in matplotlib as subplots), the axes, the
traces and the individual datapoints:

serializer.add_custom_metadata figure({"date created": "10.01.2025", "
author": "Michaela Lestakova"})
serializer.add_custom_metadata_plot(
{"description": "the figure describes the relationship between
number of cookies eaten and happinness level"}

)

serializer.add_custom_metadata_axis({"unit": "percent"}, axis="y")

serializer.add_custom_metadata_trace({"definition": "child is a person
of age 0-17.99"}, trace_selector=0)

serializer.add_custom_metadata_trace({"definition": "adult is a person

of age 18+"}, trace_selector=0)
serializer.add_custom_metadata_datapoints(
{"information": "you may have something important to say about

this point"}, trace_selector=0, point_selector=1

7 Plot Serializer and the FAIR Principles for Research Software

As a Python package, Plot Serializer follows the FAIR principles for research software [1] in the

following aspects:

Findable * Plot Serializer has a DOI and is versioned (F1, A2)
& Accessible * Plot Serializer is listed on PyPI where all relevant metadata can be found
(A1, F2)

Interoperable + Plot Serializer exports to JSON, a format that performs well in terms of
human and machine readability (I1)

Reusable * Plot Serializer has a detailed and openly available documentation (R1)

Plot Serializer is published under an open source license — MIT (R1)

A list of dependencies of Plot Serializer is provided. Plot Serializer does

not depend on proprietary software (R2)

» The software quality of Plot Serializer is guaranteed through rigorous
testing and continuous integration (R3)

Table 1: Specification of how Plot Serializer aligns with the FAIR principles for research software.
The concrete criteria are named in parentheses in the left column.

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 11

SOFTWARE DESCRIPTOR

8 Conclusion and Outlook

This software descriptor introduces Plot Serializer, a Python package for supporting researchers
in creating FAIR datasets corresponding to the figures of their manuscript. It enables effortless
export of data plotted in scientific figures into interoperable datasets with customizable metadata
for improved reusability, facilitating research data management practices. Plot Serializer fits
well into established plotting workflows and can be easily adopted by anybody familiar with the
popular plotting package matplot lib. In this software descriptor, we have briefly introduced
the architecture of Plot Serializer as well as the underlying data models and provided a minimal
example of its usage. We have also described its scope and limitations and provided information

about code quality assurance.

Plot Serializer is under continuous development. In the near future, we aim to extend its scope
to more figure types. Moreover, we aim to standardize its JSON specification, building upon
existing ontologies. The JSON specification will be published to ensure comprehensiveness
of the metadata terminology across domains. In long term, Plot Serializer may be expanded to
other popular plotting packages in Python.

9 Acknowledgements

The authors would like to thank the Federal Government and the Heads of Government of the
Lénder, as well as the Joint Science Conference (GWK), for their funding and support within the
framework of the NFDI4Ing consortium. Funded by the German Research Foundation (DFG) —
project number 442146713.

We would like to thank the student group consisting of Jan Groen, Jonas Jahnel, Max Troppmann,
Thomas Wu and, of course, the co-author of this paper Julius Florstedt who developed the first

version of Plot Serializer as a student project.

The original idea about storing plot data in human and machine readable form, out of which Plot
Serializer was born, stems from our colleagues and friends Kevin T. Logan and Tim M. Buchert.

Many thanks for the inspiring discussions.

10 Roles and contributions

Michaela Lestakova: Conceptualization, Software, Writing — original draft, Supervision
Ning Xia: Conceptualization, Software, Writing — original draft, Supervision

Julius Florstedt: Conceptualization, Software, Writing — original draft

References

[1] M. Barker et al., “Introducing the FAIR principles for research software,” Scientific data,
vol. 9, no. 1, p. 622, 2022. DOI: 10.1038/s41597-022-01710-X

[2] M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and
stewardship,” Scientific data, vol. 3, p. 160018, 2016. DOI: 10.1038/sdata.2016.18

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 12

https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1038/sdata.2016.18

SOFTWARE DESCRIPTOR Plot Serializer

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

L. Tedersoo et al., “Data sharing practices and data availability upon request differ across
scientific disciplines,” Scientific data, vol. 8, no. 1, p. 192, 2021. DOI: 10.1038/s41597
-021-00981-0

M. Pilgrim, “Serializing python objects,” in Dive Into Python 3. Berkeley, CA: Apress,
2009, pp. 205-223, ISBN: 978-1-4302-2416-7. DOI: 10.1007/978-1-4302-2416-7_13
[Online]. Available: https://doi.org/10.1007/978-1-4302-2416-7_13

S. Colvin et al., Pydantic, version v2.10.6, Jan. 2025. [Online]. Available: https://git
hub.com/pydantic/pydantic

S. Soiland-Reyes et al., “Packaging research artefacts with RO-Crate,” Data Science,
vol. 5, no. 2, pp. 97-138, 2022. DOI: 10.3233/DS-210053 eprint: https://doi.org
/10.3233/DS-210053. [Online]. Available: https://doi.org/10.3233/DS-210053

J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 90-95, 2007. DOI: 10.1109/MCSE . 2007 .55

N. Kruchten, A. Seier, and C. Parmer, An interactive, open-source, and browser-based
graphing library for Python, version 5.24.1, Sep. 2024. DOI: 16.5281/zenodo.145035
24 [Online]. Available: https://github.com/plotly/plotly.py

M. Hock, H. Mayr, M. Richter, J. Lemmer, and P. Pelz, “plotID - a toolkit for connecting
research data and visualization,” ing.grid, vol. 1, 1 Apr. 2023, ISSN: 2941-1300. DOI:
10.48694/1inggrid. 3632 [Online]. Available: https://www.inggrid.org/articl
e/i1d/3632/

Python documentation, Pickle — Python object serialization, 2025. Accessed: Mar. 17,
2025. [Online]. Available: https://docs.python.org/3/library/pickle.html

K. T. Logan, J. M. Stiirmer, T. M. Miiller, and P. F. Pelz, Comparing approaches to
distributed control of fluid systems based on multi-agent systems, 2023. arXiv: 2212 .084
50 [eess.SY]. [Online]. Available: https://arxiv.org/abs/2212.08450

T. Miiller and P. Pelz, “Algorithmisch gestiitzte Planung dezentraler Fluidsysteme,” Dis-
sertation, Technische Universitat Darmstadt and Shaker Verlag, 2022.

ing.grid 1(3 - Fair Data Management in Engineering Sciences), 13

https://doi.org/10.1038/s41597-021-00981-0
https://doi.org/10.1038/s41597-021-00981-0
https://doi.org/10.1007/978-1-4302-2416-7_13
https://doi.org/10.1007/978-1-4302-2416-7_13
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.3233/DS-210053
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.14503524
https://doi.org/10.5281/zenodo.14503524
https://github.com/plotly/plotly.py
https://doi.org/10.48694/inggrid.3632
https://www.inggrid.org/article/id/3632/
https://www.inggrid.org/article/id/3632/
https://docs.python.org/3/library/pickle.html
https://arxiv.org/abs/2212.08450
https://arxiv.org/abs/2212.08450
https://arxiv.org/abs/2212.08450

	Introduction
	Scope
	Related Work
	Embedding Plot Serializer in Research Workflows
	Implementation
	Minimal Example
	Plot Serializer and the FAIR Principles for Research Software
	Conclusion and Outlook
	Acknowledgements
	Roles and contributions

