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Abstract.

Machine learning (ML), particularly within the domain of computer vision (CV), has established

solutions for automated quality classification using visual data in manufacturing processes.

Object detection as a CV method for quality classification provides a distinct advantage

in enabling the assessment of items within the manufacturing environment, regardless of

their location in images. However, substantial challenges remain regarding labeled data

availability in manufacturing contexts, training examples, data imbalance, and the complexity

of incorporating these methods into real-world applications. Furthermore, real-world datasets

often lack adherence to FAIR principles, which limits their accessibility and interoperability,

especially for small- and medium-sized enterprises (SMEs) working to integrate object

detection into their manufacturing processes. In this article, we present a low-resolution

640x640 dataset based on plastic bricks for object detection, featuring two quality labels to

identify minor surface defects as an example of quality classification. We analyze the dataset

using a YOLOv5 model on three different dataset sizes, while accounting for class imbalance,

to demonstrate the accuracy of an object detection model in a simple manufacturing use

case. The mean Average Precision mAP@0.5 for correctly identifying instances in our

testing dataset ranges from 0.668 to 0.774, depending on dataset size and class imbalance.

While our focus is on demonstrating object detection with low-resolution images and limited

data availability, the generated data and trained model also adhere to FAIR principles.

Therefore, these resources are made available with proper metadata to support their reuse

and further investigation into object detection tasks for similar quality classification use cases

in manufacturing.

1 Introduction

Object detection and pose estimation are key capabilities in unstructured or less structured

environments to enable smart manufacturing applications, such as autonomous robots or process

monitoring [1]. However, these areas in computer vision (CV) including advanced machine

learning (ML) techniques are still in their infancy [2]. Although research reveals a robust

understanding of ML and applications, notably small- and medium-sized enterprises (SMEs)

show low maturity with only 8 percent of SMEs in Germany having deployed ML technologies
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in a questionnaire done in 2020 [3]. Also, a further study with 368 german SMEs revealed in

2021 that just 5.8 percent of them developed AI solutions by themselves [4]. The governmental

project ”Mittelstand Digital” identified insufficient data as the second most significant obstacle

among nine barriers to AI adoption in SMEs. Furthermore, the preparation of best practices and

examples was highlighted as the most suitable public measure among 16 factors that support

SMEs in AI integration [5].

These challenges and circumstances underscore the critical necessity for open-source MLdatasets

and pre-trained models, serving as illustrative examples to articulate best practices and facilitate

the transfer of research into the industry for SMEs to deploy ML techniques such as object

detection and foster their manufacturing processes. Additionally, such open-source publications

must encourage FAIR principles to ensure efficient integration and interoperability of presented

best practices for SMEs and stakeholders [6].

Recent approaches introduced various object detection datasets, in diverse domains, such as

for detection of industrial tubes or safety helmets in different scenarios [7],[8]. Moreover, the

existing research contributes to datasets provided with a focus on object detection in the context

of defect detection or quality classification of industrial goods, such as metal parts, printed

circuit boards, or insulator components for electricity supply [9], [10], [11]. Also, datasets

incorporating plastic bricks are available as artificial use cases [12], [13]. These serve as learning

resources and provide realistic synthetic image datasets for training object detection methods in

an understandable context [12].

However, the literature does not describe object detection datasets as best practices for SMEs

in the context of exemplary manufacturing applications and their adherence to FAIR principles

for easy reuse. Demonstrating a tangible object detection use case in manufacturing with

low-resolution image data and development showcases considering limited data availability

is not addressed in the literature. Exemplary model development showcases, illustrating best

practices for developing algorithms of the corresponding datasets, are either not provided or lack

description. Also, findability and descriptions of access licenses are not described, indicating an

insufficient fulfillment of FAIR principles. For example, Digital Object Identifiers or Metadata

are typically not provided within these resources. FAIRness evaluation software, such as F-UJI,

evaluates the FAIRness of the cited resources with a score below 65 percent [14]. This highlights

a significant gap in FAIR datasets and showcases that could offer tailored best practices for

SMEs in manufacturing to foster their AI integration.

Building upon the context of research challenges and existing approaches, we develop a simple

low-resolution object detection dataset based on plastic bricks with some having minor surface

defects. Furthermore, we train a current ML model of the YOLO series to detect the bricks

and whether they show defects. Different sizes of datasets are used to assess how performance

varies depending on the availability of data. Moreover, class imbalance, a common challenge in

manufacturing, is considered to highlight its impact on detection precision [15]. Our primary

discovery centers around achieving good accuracy levels despite limited data availability, class

imbalance, and suboptimal camera resolutions, emphasizing the critical interplay between data,

resolution, and the specific use case under consideration.

We structure these by presenting the dataset and its properties first, then explaining its creation
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and methods in Section 2. In Section 3, we analyze the dataset with the open-source object

detection model YOLOv5 and provide a pre-trained architecture including insights and analytics

of the training with varying dataset sizes and class imbalances. Hence, the data and model are

published regarding FAIR principles with metadata ensuring the transferability of this publication

to stakeholders, such as developers in SMEs. Finally, the contribution and its limitations will be

discussed in the conclusions.

2 Dataset

The dataset encapsulates the complexities of surface defect detection with plastic toy bricks as

objects. It comprises multiple plastic bricks of different colors and sizes within a single frame,

that are either defective or valid. Defective bricks have indentations and deformations on the

surface, aiming to resemble common surface defects in industrial manufacturing. The following

section provides a comprehensive overview of the dataset, including insights into the collection

methods and employed tools. Section 2.1 delves into the fundamental details and properties of

the dataset, while Section 2.2 outlines the process of image collection and annotation creation.

2.1 Data Description

The dataset provides images of plastic toy bricks with surface damage caused by a hammer as

objects to inspect. While the bricks occur in multiple colors and sizes, the labels are provided

binary with valid bricks and defective ones having damages on their surfaces. The dataset

consists of 1500 images containing a total of approximately 4400 objects. Among these objects,

there are roughly 2000 instances representing defects and 2400 representing valid instances. This

balanced distribution of labels within the dataset serves to counteract possible biases and prevent

models from learning disproportionately toward any particular class and therefore simplify the

object detection task. Nevertheless, the dataset can be manipulated to introduce class imbalance

by utilizing the metadata on class distribution to select a subset of the data, thereby making the

task more challenging, as demonstrated in Section 3.

Each image has a corresponding label. Table 1 shows all information provided by a label. The

coordinates x-center and y-center are normalized and refer to the coordinates of the center point

of a bounding box, that labels an object to inspect. Width and height represent the dimensions of

the bounding box in normalized pixels, where pixel values are scaled between 0 and 1, relative

to the image dimensions. Lastly, the label indicates the two classes valid and defective. Figure

1 overlaps the labels of each image. Figure 1a shows x-center and y-center. The uniform

distribution counteracts any specific patterns in the locations of objects. Further, Figure 1b

represents the height and width of each bounding box center and indicates the dimension of an

object. The linear distribution occurs due to the quadratic geometry of all plastic bricks used.

Defective instances in the testing set do not appear in the training or validation set images.

Class X-Center Y-Center Width Height

Defective 0.43984375 0.43125 0.0375 0.0546875

Valid 0.44765625 0.5921875 0.0390625 0.05625

Table 1: The content of the label file corresponding to the example image in Figure 3b
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(a) X-center and y-center are the normalized

coordinates of the bounding boxes around

objects

(b) Height and width represent the size of a

bounding box indicating the dimension of an

object and its distance to the camera

Figure 1: The distribution in both figures is nearly uniform and therefore counteracts specific

patterns in object locations

The correlogram in Figure 2 shows a detailed correlation of all data properties. It is a group of

2-dimensional histograms showing each axis of the data against each other axis. The correlation

statistics indicate the position, width, and height of the bounding boxes of the objects. The figure

indicates that the dataset properties are balanced in each label combination with no clusters

visible. The distributions of single labels present approximately normal distribution. Notably,

outliers are infrequent, and those present are rare points rather than data values that significantly

deviate from the expected pattern.
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Figure 2: The correlation of all labels to each other shows an approximately normal distribution and

balance in the data

Each image is saved in JPG/.jpg format with a size ranging between 35 and 40 kilobytes. These

images maintain a consistent shape of 640x640 pixels. The corresponding labels for these

images are stored in a separate file in TXT/.txt format, which also includes metadata on how

many instances of each class are present in the image, allowing for the creation of imbalanced

subsets of the data. The file paths for both the images and the labels are specified within a file

in YAML/.yaml format. As a result, all files collectively occupy a total size of 58.2 megabytes.

The files are available on Zenodo and linked in Section 4: Usage Notes.

The dataset offers a wide range of possibilities for diverse tasks, including object localization,

object classification, object counting, semantic segmentation, and scene understanding. However,

the dataset’s provided labels and the identifiable damages on the objects make it particularly well-

suited for tasks related to object detection and quality classification, specifically in identifying

surface defects often encountered in manufacturing industries.
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2.2 Data Collection

The data collection was done in a defined procedure. Images were captured with a microcontroller

board and a compatible camera. An Arduino UNO was chosen with an OV7670 300KPVGA

Camera. Arduino embedded systems are widely available and used for prototype purposes.

They benefit from an active online community helping to lower development challenges [16].

Moreover, the setup includes fluorescent lighting directed toward the objects under inspection,

with the camera positioned on a tripod to maintain a fixed distance from the ground, where all

the objects are placed. The distance between the camera and the objects is determined by the

angle each object has relative to the camera. On the software side, Python code controls the

capturing process. The collection started from single objects with different colors, angles, and

positions, as well as defects on some objects. Later on, multiple objects were placed in one

image with the same differences described. Each defect is generated by a hammer manually and

therefore individual with a varying degree of surface damage. This supports the diversity of

surface damages that are labeled as defective.

The annotation of the images is based on the software Roboflow [17]. Features, polygon bounding

boxes, and labels are provided with this software. Besides, Roboflow is used for auto-orient to

discard common rotations by metadata and standardize pixel ordering, as well as resizing the

images to a frame of 640x640 pixels from the original camera resolution of 1640x1232 pixels.

This resolution of 640x640 is often suggested to facilitate the convenient use of object detection

models, such as YOLOv5 [18]. Figure 3a shows an exemplary image before annotation and

Figure 3b shows the same image after annotation. The purple box indicates the valid object,

while the red box indicates the defective one. Table 1 shows the corresponding label information

of Figure 3b. All boxes are applied comprehensively around the relevant objects, ensuring that

occluded objects are always fully included. Besides, we aimed to minimize the spaces between

the bounding box borders and the objects to ensure that only the relevant objects are enclosed

within the box.

(a) Original image (b) Labeled image

Figure 3: Examplary image of the dataset consisting of two objects with one valid and one defective

instance

Finally, the captured images and labels are stored in Zenodo and saved with a Data Management

Plan (DMP) created with RDMO [19]. The DMP includes information about metadata, data

formats, as well as technical insights to enhance scientific reuse within FAIR principles. F-UJI

scored the resource with a FAIRness of 75 percent.
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3 Object Detection and Quality Classification Showcase

While the presented dataset provides possibilities to perform various tasks, this section aims to

demonstrate the dataset’s suitability for object detection and quality classification through binary

defect detection of the surface damages occurring on the objects. This showcase shall be a best

practice to learn and facilitate additional exploration. Additionally, training is conducted on

varying dataset sizes and class imbalances to demonstrate the performance and its relationship

with both the quantity of data and the degree of imbalance used during training. The variation in

dataset size and class imbalance is intended to address challenges faced by SMEs with limited

and imbalanced data. Therefore, we first explain the metrics used for this task, introduce the

algorithm trained, and then present its results across different dataset sizes and class imbalances.

3.1 Metrics

As the task consists of binary defect detection on objects that need to be detected first, several

metrics need to be used. The object detection is measured by Intersection over Union (IoU), as

suggested by literature [20]. This metric is based on the ratio of the area of intersection of two

bounding boxes to the area of union of two bounding boxes as shown in the Formula 1

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠
(1)

Therefore, greater IoU values signify increased overlap and an improved prediction. To elim-

inate redundant boxes encompassing the same object, IoU typically employs Non-Maximum

Suppression. This method operates on the criterion that predictions with IoU lower than the

confidence threshold are ignored, while only boxes with IoU values exceeding this threshold

are retained. Here, the confidence threshold denotes the minimum score at which the model

considers a prediction to be valid. Furthermore, Precision (P) and Recall (R) as classification

metrics are applied to measure the accuracy of fault detection within detected objects. Generally,

an image typically contains a wealth of information, including both relevant and irrelevant

objects. To clarify this, P is introduced to only indicate relevant ones. It measures the proportion

of correctly recognized objects out of all detected objects. R, on the other hand, measures the

proportion of relevant objects that were correctly recognized by the model out of all relevant

objects. The mathematical definitions of P and R are shown in Formula 2 and Formula 3. True

Positive (TP) represents correct detections (IoU ≥ confidence threshold), False Positive (FP)

represents a wrong detection (IoU < confidence threshold), and False Negative (FN) represents

a wrong misdetection.

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃 ) = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

= 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃

(2)

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹 𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

= 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁

(3)

P and R offer a trade-off that it is graphically represented in the PR curve by varying the

classification threshold. The area under this curve provides the average precision for each class
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(AP𝑖) for the trained model. The average of this value across all classes is referred to as the mean

Average Precision (mAP), which is used to evaluate performance in object detection and quality

classification in this showcase, as it combines all introduced metrics. The equation is shown in

Formula 4. The equation is shown in Formula 4.

𝑚𝐴𝑃 = 1
𝑁

𝑁

∑
𝑖=1

𝐴𝑃𝑖 (4)

N corresponds to the total number of object classes. mAP has different categories, varying

in their parameter settings. We select the most common ones mAP@0.5 and mAP@0.5:0.95.

mAP@0.5 is used across several benchmark challenges on datasets such as Pascal VOC or

COCO. It interpolates with 101 recall points with (IoU) threshold = 0.5, which means that IoU

values greater than or equal to 0.5 are considered TP, while values less than 0.5 are considered

FP predictions. mAP@0.5:0.95 uses the same interpolation method as mAP@0.5, but averages

the APs obtained from using ten different IoU thresholds (0.5, 0.55, …, 0.95). The introduced

metrics P, R, mAP@0.5 and mAP@0.5:0.95 measure the performance of the algorithm during

training and in tests after training in this showcase.

3.2 Algorithm and Training

An algorithm of YOLO series is selected as an example real-time object detection algorithm

commonly used in research and industry. YOLO series object detection algorithms use a one-

stage neural network to directly complete detection object localization and classification without

using pre-generated region proposals [21], [22]. They are widely used for their good balance be-

tween high speed and high accuracy, easy implementation, and low-cost maintenance. YOLOv5,

proposed by Jocher Glenn [18], is selected as the YOLO version after consideration of com-

puting resources, layers of the network, model parameters, detection accuracy, inference time,

deployment ability, and algorithm practicability. The specific model YOLOv5 is used for its

properties of lightweight and relatively high speed. Since the size of the dataset in this showcase

is relatively small and the background information is fixed, real-time detection and high accuracy

can be ensured by YOLOv5s at the same time.

Training is conducted on smaller subsets of the dataset, as well as with class imbalances, to

demonstrate the model’s performance to the number of images and the degree of class imbalance

used for training. Three different dataset sizes, with a class imbalance in the first two, are used

as shown in Table 2. To create the imbalanced datasets, images with fewer instances of the

’valid’ class were selectively removed, resulting in a final dataset with around 65% of images

containing valid parts. The sizes of the training datasets are 310, 378, and 1050, respectively.

The validation and testing set sizes are 16% and 20% for the 1st and 2nd datasets, and 20% and

10% of the total data for the complete dataset. The algorithm is trained 300 epochs with a batch

size of 32 using YOLOv5s default hyperparameters.

ing.grid 2(1), 2025 8
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Training Set Validation Set Testing Set

1st(normal) 310 78 97

1st(imbalanced) 310 78 97

2nd(normal) 378 94 118

2nd(imbalanced) 378 94 118

3rd 1050 300 150

Table 2: Split of Training set, Validation set, and Testing set for all dataset sizes used

3.3 Evaluation

As introduced, the results are presented with P, R, mAP@0.5 and mAP@0.5:0.95 for validation

and testing set of the dataset and visualized in Table 3 and Table 4. The performance on the

validation set exceeds that of the testing set, indicating overfitting during training. Overall, the

performance on the testing data varies depending on dataset size and class imbalance. Regarding

the entire dataset, the trained model achieves a validationmAP@0.5 of 0.995 and test amAP@0.5

of 0.668. The visualized comparison between the size of the dataset can be seen in Figure 4

for the validation data and in Figure 6 for the testing data. Despite this, there is no significant

performance increase, suggesting that even with the smallest dataset, satisfactory performance

in training, but not in testing is achieved. However, it is possible that more advanced models,

such as newer versions of YOLO, could achieve better test performance.

Class Precision Recall mAP@0.5 mAP@0.5:0.95

All 0.99 1 0.995 0.858

1st(normal) Defective 1 0.999 0.995 0.856

Valid 0.98 1 0.995 0.859

All 0.994 0.988 0.994 0.833

1st(imbalanced) Defective 1 0.975 0.995 0.833

Valid 0.988 1 0.994 0.832

All 0.989 0.983 0.995 0.84

2nd(normal) Defective 0.978 0.99 0.995 0.835

Valid 1 0.976 0.995 0.845

All 0.995 0.996 0.995 0.825

2nd(imbalanced) Defective 1 0.992 0.995 0.821

Valid 0.99 1 0.995 0.829

All 0.998 0.999 0.995 0.833

3rd Defective 0.997 1 0.995 0.828

Valid 1 0.998 0.995 0.839

Table 3: Precision, Recall, mAP@0.5 and mAP@0.5:0.95 for the Validation Set
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Class Precision Recall mAP@0.5 mAP@0.5:0.95

All 0.763 0.708 0.676 0.514

1st(normal) Defective 0.547 0.986 0.639 0.49

Valid 0.979 0.43 0.713 0.539

All 0.733 0.794 0.774 0.594

1st(imbalanced) Defective 0.541 0.995 0.647 0.519

Valid 0.926 0.592 0.873 0.669

All 0.687 0.714 0.677 0.499

2nd(normal) Defective 0.477 1 0.588 0.442

Valid 0.897 0.429 0.766 0.556

All 0.762 0.712 0.711 0.531

2nd(imbalanced) Defective 0.543 1 0.617 0.465

Valid 0.982 0.425 0.806 0.596

All 0.707 0.708 0.668 0.507

3rd Defective 0.473 0.997 0.554 0.424

Valid 0.941 0.419 0.781 0.589

Table 4: Precision, Recall, mAP@0.5 and mAP@0.5:0.95 for the Testing Set

Figure 4: mAP@0.5 and mAP@0.5:0.95 metrics of validation set of all five dataset

Figure 5: mAP@0.5 and mAP@0.5:0.95 metrics of Testing set of all five dataset
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4 Conclusion

SMEs in the manufacturing sector lag behind their larger counterparts in the adoption of ML

technologies like object detection. This is influenced by factors including insufficient data, high

complexity, and a scarcity of tangible examples. We presented a simple low-resolution dataset

based on plastic bricks with different surface defects to address a typical use case of object

detection in manufacturing. By using a low-resolution dataset with a limited number of instances

and accounting for class imbalances, we aimed to address typical challenges faced by SMEs.

A showcase provided with a YOLOv5 model indicated sufficient performance with different

metrics. Our findings show that maintaining simplicity does not compromise performance,

demonstrating the effectiveness of straightforward open-source object detection methods and

achieving an mAP@0.5:0.5 score up to 0.995 in training and 0.774 in testing. These findings

were published ensuring FAIR principles and achieved an FAIR score of 75 percent in F-UJI.

The provided data and YOLO model can be reused for learning purposes and establish the

groundwork for transferring knowledge to object detection tasks with similar surface damages

on the objects to inspect. However, it’s important to note that the limitation lies in the inability to

directly apply such models or data to unrelated tasks. The consideration of the specific context

is fundamental for the transferability of the presented methods. Additionally, it is important

to recognize that industrial damages can significantly differ in the complexity of their defects.

Future research should focus on investigating more universally applicable resources, facilitating

direct transfer for use cases at SMEs through interoperable research approaches.

5 Usage Notes

The dataset generated for this research is accessible on Zenodo via DOI (https://zenodo.o

rg/records/10731976). The dataset is licensed under the Creative Commons Attribution 4.0

International License (CC BY 4.0). The developed algorithm is available on RWTHAachen

Gitlab (https://git.rwth-aachen.de/zukipro/yolov5_for_plastic_brick_qualit

y_classification) and licensed under GNUAffero General Public License v3.0.
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6 Appendix

Class mAP@0.5 mAP@0.5:0.95

1st (normal) Defective 0.995 0.873

Non-defective 0.995 0.875

1st (imbalanced) Defective 0.995 0.865

Non-defective 0.995 0.873

2nd (normal) Defective 0.995 0.851

Non-defective 0.995 0.849

2nd (imbalanced) Defective 0.995 0.858

Non-defective 0.995 0.859

3rd Defective 0.995 0.868

Non-defective 0.995 0.874

Table 5: mAP@0.5 and mAP@0.5:0.95 for the Training set

Figure 6: mAP@0.5 and mAP@0.5:0.95 metrics of Training set of all five dataset
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